I've covered some of the basic elements of Multicasting, such as IGMP and the Layer 2 switching components in my previous posts (Part 2). This article will go into the technology behind Multicasts at Layer 3 and some of the issues limiting wider use of Multicast technology.
As you recall in my first post, I observed that Yahoo's transmissions of live NHL games would seem to be good candidates for Multicast, yet were being sent as unicast. Then I covered the simple issue of enabling Multicast within a local area network. Coming full circle, here we are diving into Multicast technology to understand why it isn't more widespread.
In my last post, I discussed multicasts and some of the basic concepts. This time, I'm going to discuss technologies used by switches and routers to enable and configure multicasts. Specifically, I'm going to dive into addressing and IGMP. Understanding the details behind multicasts helps understand configuring multicasts as well as the issues limiting the use of multicasts on the web.
With the growth of IPTV and other IP media streaming technologies, applications for multicast technology are increasing. Live Video broadcasts and VoIP applications are viable uses for real time transmissions over an IP network from a single source to multiple recipients.
Most data transmissions are unicasts, which are a one-to-one data stream sent from one device to another device. Email, web surfing, and file downloads are all examples of unicasts, even for the busiest sites or most downloaded files. Although a single web page may be visited thousands of times each day, each time it is viewed it is individually transmitted to the requestor's PC as a unicast.
It's harder than you think for that expensive router of yours to deliver all the throughput the big number on its box promises. We show you why.
Trying to decide between a router and a Wi-Fi System? This experiment should help you choose wisely.
Updated: Here's a quick primer on Wi-Fi 6E.
Wi-Fi ping spikes aren't always caused by a poor connection. Your router settings could be to blame.
Ever wonder what happens behind the scenes when Wi-Fi devices roam, or more likely don't? We'll show you why the "seamless" roaming Wi-Fi gear makers promise is still as elusive as a Yeti.
We reveal the secrets of why your devices don't always connect where you want them to and what you can do to fix it.