Performance
For the PLA-400's powerline's performance testing, I used the same five test locations around my home that I used for the HomePlug Turbo Roundup and Corinex AV200 testing. Go here if you want the details on the locations and distances.
I used Ixia's IxChariot and set up two copies of the standard throughput.scr script to run simultaneously, one from the IxChariot console to a remote endpoint (for transmit), and the second with endpoints swapped (for receive). I used TCP/IP, changed the file size to 300,000 Bytes from the 100,000 Byte default, and set the scripts to run for one minute.
Figure 7: PLA-400 Performance comparison
Figure 7 shows the results for the PLA-400 along with results from Zyxel's PL-100 HomePlug 1.0 plus Turbo adapters and the Corinex AV200 DS2-based product. (I'll explain the "alt. Loc. 4" bars shortly.) As expected, HomePlug AV (HPAV) has higher maximum throughput (Location 1 results) than HomePlug Turbo (HPT).
But the more significant news is that HPAV maintains higher throughput in more test locations than HPT. The maximum throughput percentage loss from Location 1 for HPAV is 82% in Location 4, but is below 50% in all other locations. HPT's maximum loss (again in Location 4) is 90% and is above 70% in all other locations.
I'll be doing more of an in-depth comparison of HPAV and DS2 powerline technologies in a future review. However, Figure 7 shows that while the Corinex AV200's best-base throughput is 20% higher than the PLA-400's, it doesn't maintain that advantage in the other test locations. The AV200's worst-case loss (Location 4) is 95% and the other locations' losses are 58% or higher.
Figure 8 shows an IxChariot plot of the simultaneous receive and transmit runs for the PLA-400 in Location 1 so that you can see the throughput variation.
Figure 8: PLA-400 Location 1 throughput
Now for the "alt. Location 4" explanation. In past powerline testing, I've never had much luck with getting throughput to change by doing the ol' run-the-hairdryer test for noise injection. But this time, I accidentally discovered two noise sources that are quite effective in reducing throughput.
Location 4 is at a kitchen desk area where our cordless phone system base station and cell phone charger are located. On a hunch, I pulled both of them while running the Location 4 test. Pulling the cordless phone base station had no effect, but pulling the cellphone charger caused the ~20% jump in Location 4 throughput that is recorded in the "alt. Location 4" line in Figure 7 for both the PLA-400 and PL-100. Needless to say, I'll be conducting future Location 4 powerline testing without the cell phone charger plugged in!
I discovered the other noise source while running tests late one afternoon. It was getting dark, so I had turned on a halogen floor lamp that is on a dimmer. I had started to run tests on the PL-100 and results were coming out about half of previously tested products. When I reran the tests the next morning, the results came in about equal to previously-tested HPT products. It took awhile, but the light finally dawned and further experiments confirmed the 50% throughput reduction (in Location 1) caused by the dimmer for HPT.
When I tried the deadly dimmer on the PLA-400 pair, however, I saw only about a 10% throughput reduction. Note that all of the testing represented in Figure 7 was done with the light (and dimmer) turned off.