Like every other website on the planet, SmallNetBuilder uses cookies. Our cookies track login status, but we only allow admins to log in anyway, so those don't apply to you. Any other cookies you pick up during your visit come from advertisers, which we don't control.
If you continue to use the site, you agree to tolerate our use of cookies. Thank you!

Router Charts

Click for Router Charts

Router Ranker

Click for Router Ranker

NAS Charts

Click for NAS Charts

NAS Ranker

Click for NAS Ranker

More Tools

Click for More Tools

LAN & WAN Features

Introduction

Judging from some of the feedback in the gigabit switch reviews we've published this year—8 Port Gigabit Switch Roundup | $250 Gigabit Smart Switch Roundup—some readers are having problems getting the boost in performance they expected from upgrading to a gigabit LAN.

The problems usually arise when there is a mixture of gigabit and Fast Ethernet (100 Mbps) clients. The problem scenario usually involves simultaneous transfers from a single gigabit-equipped client to a mix of gigabit and Fast Ethernet clients. Figure 1 illustrates the troublesome setup. (The Netgear switch is just used for illustration. The problem is common to virtually all non-managed gigabit switches.)

Flow Control test setup

Figure 1: Flow Control test setup

The expected behavior in this configuration is for the sender's gigabit bandwidth to be divided between the two receivers. Each receiver would lose some throughput due to the overhead of the simultaneous tranfers. But both would still function at speeds near those experienced when running solo.

But what readers have reported are instances of gigabit links being forced to Fast Ethernet speeds. One reader said that merely plugging a NIC running at 100 Mbps into a gigabit switch was enough to force all gigabit links to 100 Mbps speed. But the more common scenario requires simultaneous transfers from a single gigabit machine to a mix of gigabit and 100 Mbps computers.

The Culprit - Flow Control

Once a helpful reader (thanks, Walken!) provided a detailed description of the problem and some links to supporting documentation, the reason for this behavior made sense. The problem is caused by 802.3x Flow Control.

Flow control was intended to handle the situation where a transmitting computer is sending data faster than a receiving machine can handle it. The IEEE 802.3x standard specifies a PAUSE flow control mechanism communicated via MAC Control frames in full duplex Ethernet link segments. Like jumbo frames, the PAUSE mechanism requires all device in the data flow path to support it, which includes the switch.

Unfortunately, it seems (at least in small networks) that 802.3x does more harm than good. This may be partly because it duplicates the loss-based flow control mechanism already built into the TCP protocol. But whatever, the reason, I was able to confirm that the throughput loss that some people were attributing to "defective" or "low performance" switches, was in fact, due to Flow Control.

More LAN & WAN

Wi-Fi System Tools
Check out our Wi-Fi System Charts, Ranker and Finder!

Support Us!

If you like what we do and want to thank us, just buy something on Amazon. We'll get a small commission on anything you buy. Thanks!

Over In The Forums

I followed the bay area techpros guide for flashing the tm-ac1900 to rt-ac68u some months ago. It has worked and I have been using the asus merlin rel...
For one of my devices I have been using client VPN routing rules without issues for quite some time now, but all of a sudden the routing rules stopped...
I have an issue, i have several younger children and I have the need to schedule their devices to shut off at 8:00 PM and turn back on at 8 am....this...
I have some network cables going through my house and I have an intermittent issue I would like to get some advice on. I will describe the overall set...
Running BT infinity (business broadband). First month with the AC-88U was fine, over the past few days it's dropping like crazy, 10 mins, a few hours....

Don't Miss These

  • 1
  • 2
  • 3