Like every other website on the planet, SmallNetBuilder uses cookies. Our cookies track login status, but we only allow admins to log in anyway, so those don't apply to you. Any other cookies you pick up during your visit come from advertisers, which we don't control.
If you continue to use the site, you agree to tolerate our use of cookies. Thank you!

Router Charts

Click for Router Charts

Router Ranker

Click for Router Ranker

NAS Charts

Click for NAS Charts

NAS Ranker

Click for NAS Ranker

More Tools

Click for More Tools

Wireless Reviews

Throughput vs. Path Loss

NOTE!NOTE: We no longer refer to "range" in these plots, but instead use the more accurate "Path Loss". For an explanation, see the How we Test Wireless article.

Figure 21 was generated using the Compare Benchmarks tool of our Wireless Charts and shows 2.4 GHz up and downlink performance in 20 and 40 MHz channel modes. The 40 MHz channel width seems to provide a meaningful throughput boost only when running downlink. Again, note that the multi-second throughput dropout that I mentioned earlier tends to move these throughput values downward. (Each point on the plot is the average throughput for a 1 minute test.)

Throughput vs. Path Loss - 2.4GHz
Click to enlarge image

Figure 21: Throughput vs. Path Loss - 2.4GHz

Figure 22 shows performance in the 5 GHz band, which also includes both 20 and 40 MHz channel modes. Once again, the curves are similar except for downlink with a 40 MHz channel. That throughput starts out close to 100 Mbps, but then drops to merge with the other curve once the "waterfall" portion of the curve is hit.

Even though the plots don't reflect the difference in real-world signal attenuation between 2.4 and 5 GHz, the 5 GHz curves end significantly sooner than the 2.4. This indicates that 5 GHz range will be noticeably smaller than 2.4.

NOTE!NOTE: 2.4 GHz and 5 GHz test results can only be compared within each frequency band. The Azimuth system does not reflect the difference in signal attenuation between the bands in the mathematical models it uses.

Throughput vs. Path Loss - 5GHz
Click to enlarge image

Figure 22: Throughput vs. Path Loss - 5GHz

More Wireless

Wi-Fi System Tools
Check out our Wi-Fi System Charts, Ranker and Finder!

Support Us!

If you like what we do and want to thank us, just buy something on Amazon. We'll get a small commission on anything you buy. Thanks!

Over In The Forums

Hello guys.Right now I'm using that line to make a backup of my entire jffs in shell:Bash: tar -cf some_folder/jffs_"$FWVER".tar /jffs >/dev/null 2>&...
I have attached a 2TB WD elements and partitioned it for 1.8TB for network share and 200GB for use with jffs partition on a RTAC88U with Merlin 384.18...
This is FlexQoS, a fork of the original, groundbreaking FreshJR_QOS script written by @FreshJR.FlexQoS provides a fully customizable Adaptive QoS expe...
Supermicro SuperServer E302-9D Review: A Fanless 10G pfSense Powerhouse www.anandtech.com With this piece of kit, I could see myself wadin...
Hello,I'll start by saying that I'm a bit of a novice with networking and I've been searching around for information about this for ages and I'm a bit...

Don't Miss These

  • 1
  • 2
  • 3