Like every other website on the planet, SmallNetBuilder uses cookies. Our cookies track login status, but we only allow admins to log in anyway, so those don't apply to you. Any other cookies you pick up during your visit come from advertisers, which we don't control.
If you continue to use the site, you agree to tolerate our use of cookies. Thank you!

Router Charts

Click for Router Charts

Router Ranker

Click for Router Ranker

NAS Charts

Click for NAS Charts

NAS Ranker

Click for NAS Ranker

More Tools

Click for More Tools

Wireless Reviews

Introduction

A few weeks ago, I had a call with Cisco to discuss the wireless test results in the WRT160NL review. Seems that Cisco had tried to reproduce my results using a similar setup and could not see the high throughput variation that I had encountered, which caused low average downlink throughput.

During the discussion, I found that Cisco had used a more recent driver for the Intel WiFi Link 5300 test client. Where I had used version 12.2.0.11, Cisco used 12.4.0.21. As it turns out, I had moved up to the 12.4.0.21 driver myself a few reviews ago and found that it tended to change link rates less often. So I agreed to run a quick retest on the 160NL and post the results.

Test Results

I used the open air test method described here to retest the 160NL's wireless performance. Testing was done using the SNB standard wireless test client, an Intel Wi-Fi Link 5300 AGN mini-PCIe card and 12.4.0.21 driver in a Dell Mini 12 running WinXP Home SP3. I left all client-side defaults in place except for enabling throughput enhancement (packet bursting) and changing the 802.11n Channel Width (2.4 GHz) setting from its 20 MHz default to Auto, so that the adapter would support 40 MHz channel bonding mode.

I also found that Cisco had posted v1.00.01 B17 firmware for the WRT160NL, so I loaded that into the router. I left all factory default settings in place, except setting channel 1.

Figure 1 compares the previous and retest results for a downlink test run using the default 20 MHz bandwidth mode. The results improved most significantly in the medium-strength test locations B, C and D. There was minor improvement in strongest signal Location A, and a bit lower speed in the weakest signal test locations E and F.

Retest six location wireless throughput comparison - 20 MHz mode, down

Figure 1: Retest six location wireless throughput comparison - 20 MHz mode, down

The other modes and directions in Figures 2 - 4 also show a mix of better and worse results.

Retest six  location wireless throughput comparison - 20 MHz mode, up

Figure 2: Retest six location wireless throughput comparison - 20 MHz mode, up

Retest six location wireless throughput comparison - 40 MHz mode, down

Figure 3: Retest six location wireless throughput comparison - 40 MHz mode, down

Retest six location wireless throughput comparison - 40 MHz mode, up

Figure 4: Retest six location wireless throughput comparison - 40 MHz mode, up

More Wireless

Zyxel logo

Wi-Fi Mesh System Secrets - Here's how to get the most out of your whole home mesh WiFi system.

Wi-Fi System Tools
Check out the new Wi-Fi System Charts, Ranker and Finder!

Featured Sponsors



Support Us!

If you like what we do and want to thank us, just buy something on Amazon. We'll get a small commission on anything you buy. Thanks!

Over In The Forums

‚Äč ASUS Lyra Trio's three-stream approach to mesh Wi-Fi fails to impress.Read on SmallNetBuilder
I have 2 RT-AC68U's with running Firmware Version:384.5. One is set up as Media Bridge the other is in AP Mode.The one running in Media Bridge mode is...
Hey All,I built a house last year and ran cat6 everywhere. I installed a Unifi AC Lite in the ceiling of the living room, which is central to the hous...
It looks like Spectrum (Charter) cable is readying a 4x4 802.11ax wireless router to provide to certain customers who choose to pay a monthly fee for ...
Dear all,I have bought the router 86U new and wanted to run it with the same, working configuration of my 68U. But unfortunately there seems to be a p...

Don't Miss These

  • 1
  • 2
  • 3