Like every other website on the planet, SmallNetBuilder uses cookies. Our cookies track login status, but we only allow admins to log in anyway, so those don't apply to you. Any other cookies you pick up during your visit come from advertisers, which we don't control.
If you continue to use the site, you agree to tolerate our use of cookies. Thank you!

Router Charts

Click for Router Charts

Router Ranker

Click for Router Ranker

NAS Charts

Click for NAS Charts

NAS Ranker

Click for NAS Ranker

More Tools

Click for More Tools

Wireless Reviews

AC vs. AX Performance - ASUS GT-AX11000

I'll first show how each router did with AC and AX STAs. First up is the ASUS GT-AX11000, the most expensive router in this round-up.

The 2.4 GHz downlink plot shows the 2X throughput improvement for some of the points with lower attenuation / higher signal, as predicted by the link rate ratio described earlier . The sharper throughput falloff between 39 and 51 dB attenuations decreases the advantage, but it moves back toward 2X as signal level falls.

There are actually two AC STA lines on the curve, the AC200 AC mode line represents the Intel AX200 adapter limited to AC link rates by using the Windows Advanced Wireless Properties selector. The Pal24 and AX200 track pretty closely through the strong-to-mid level attenuations. But as signal levels fall after 54 dB attenuation, the AX200 moves ahead, maintaining better throughput for the rest of the test run.

ASUS GT-AX11000 2.4 GHz - downlink

ASUS GT-AX11000 2.4 GHz - downlink

The 2.4 GHz uplink plot shows an even greater throughput advantage between AX and AC STA, as well as a better-behaved curve. We also once again see the AX200 outperform the Qualcomm-based Pal24 at attenuations beyond 54 dB.

ASUS GT-AX11000 2.4 GHz - uplink

ASUS GT-AX11000 2.4 GHz - uplink

The 5 GHz downlink plot, however, shows a bad, but consistent story for both AC and AX STAs. In all cases, throughput quickly falls off and slowly increases in the mid attenuation range, then once again declines at higher attenuations. This is what I meant when I earlier said that there appears to be some interoperability issues to iron out.

ASUS GT-AX11000 5 GHz - downlink

ASUS GT-AX11000 5 GHz - downlink

5 GHz uplink shows even wonkier performance for the stronger signal levels (lower attenuations) for the AX200 in both AX and AC modes. The octoScope Pal5 AC STA, however, looks just fine.

ASUS GT-AX11000 5 GHz - uplink

ASUS GT-AX11000 5 GHz - uplink

AC vs. AX Performance - Intel RAX40

NETGEAR's RAX40 is the lone representative of Intel's Wi-Fi 6 platform in this round-up. It's also the only two-stream router and the most affordable at around $200. Let's see what saving some coin on your first AX router gets you for Wi-Fi 6 performance.

This time, two AX200 runs were done, but instead of switching the AX200 to AC mode, it was left as an AX STA, but using the Linux driver.

The 2.4 GHz downlink plot shows the expected 2X throughput gain (actually better) from the AX200 using the Windows driver. But performance with the Linux driver is significantly lower, running somewhere between the AX200 / Win 10 and octoScope Pal24 plots at low-to-medium attenuation values. Things settle down at the 48 dB attenuation mark and are more predictable after that. The AX200 shows it's a superior adapter than the Qualcomm-based Pal24 from 57 dB attenuation onward and finally matches the Windows 10 driver from 69 dB on.

NETGEAR RAX40 2.4 GHz - downlink

NETGEAR RAX40 2.4 GHz - downlink

The 2.4 GHz uplink plot shows why I prefer not to use the AX200 as a Linux STA until Intel sorts out the driver problems. Multiple runs had to be made before getting one that didn't disconnect very early. Note the adapter didn't disconnect at 33 dB attenuation; it remained connected, but produced very little throughput.

NETGEAR RAX40 2.4 GHz - uplink

NETGEAR RAX40 2.4 GHz - uplink

The 5 GHz downlink plot shows an interesting mix of results, with the AX200 on Win 10 turning in the best performance. The AX200 with Linux showed the rapid throughput decrease we saw on the ASUS GT-AX11000, while the octoScope Pal5 had an, uh, interesting run.

NETGEAR RAX40 5 GHz - downlink

NETGEAR RAX40 5 GHz - downlink

5 GHz uplink again shows the AX200 Linux driver has some significant problems. Remember this is with an Intel STA connected to an Intel AP! The AX200 on Windows produced the best run, although it had problems at higher signal levels. The Pal5 also had a throughput dip early in the run but recovered, only to rapidly fall off between 24 and 30 dB attenuation.

NETGEAR RAX40 5 GHz - uplink

NETGEAR RAX40 5 GHz - uplink

More Wireless

Wi-Fi System Tools
Check out our Wi-Fi System Charts, Ranker and Finder!

Support Us!

If you like what we do and want to thank us, just buy something on Amazon. We'll get a small commission on anything you buy. Thanks!

Over In The Forums

I’m trying to replace an old router. It’s not going very well for me since I’ve been literally trying the whole year, and I’m thinking with Black Frid...
I'm facing a problem with a recent setting my provider KPN (from the Netherlands) changed for their interactive IPTV boxes.Right now the setup is in b...
Between marketing jargon and technical descriptions, every time I turn around there's some new type of QOS. Please help my confused brain!Regardless o...
I have started this thread to document my journey in setting up a DIY NAS.I currently have a ReadyNAS RN212 which is a desktop model with 2x2Tb WD red...
Checking out the RT-AC68U's /dev/urandom and running some tests on it.I collected a few large chunks of entropy from the AC68U's /dev/urandom:Code: s...

Don't Miss These

  • 1
  • 2
  • 3