Like every other website on the planet, SmallNetBuilder uses cookies. Our cookies track login status, but we only allow admins to log in anyway, so those don't apply to you. Any other cookies you pick up during your visit come from advertisers, which we don't control.
If you continue to use the site, you agree to tolerate our use of cookies. Thank you!

Wi-Fi Router Charts

Click for Wi-Fi Router Charts

Mesh System Charts

Click for Wi-Fi Mesh System Charts

The Tests

The Atlas Max is the first Wi-Fi mesh system tested with my brandy-new Version 2 Wi-Fi Mesh System test process. The V2 mesh process uses many of the tests from the Version 11 Wi-Fi Router test process, so we're now testing both throughput and latency in the mesh. It also has a simple "capacity" test.

As with the new router benhmarks, I had to create a different set of Charts to use the new set of benchmarks. So all Wi-Fi 6 and 6E Wi-Fi mesh systems will be found in the Wi-Fi Mesh System Charts, Finder and Ranker. You can get to them all using the Tools link in the site navigation bar.

To have something to compare to, I also ran a NETGEAR RBK752 Orbi Tri-Band WiFi 6 Mesh System through the V2 benchmark suite. Since the Orbi has only two-stream fronthaul radios and a high-band 5 GHz four-stream backhaul configuration, it's not an apples-to-apples matchup. The SKU tested is also only a two node system vs. the Atlas Max' three. But it turned out the comparison produced some very interesting results.

Routing Benchmark Results

Every router tested before I paused reviews two years ago was fully capable of wire-speed gigabit throughput. So until manufacturers include > 1 GbE ports on both WAN and LAN, wired throughput testing is going to be pretty boring. Any differences you see in results are more due to test process variation than product performance. Keep in mind the best you'd ever see in this benchmark would be ~ 944 Mbps, not 1000 Mbps, due to TCP/IP overhead. While the Atlas Max' throughput is slightly below the NETGEAR, I wouldn't worry about the result. Note the NETGEAR has only 1 GbE ports.

Routing throughput results

Routing throughput results

The new benchmarks include router latency, which is generally pretty low. I'm showing only 90th percentile values that come right from the betterspeedtest.sh script used for wired router performance benchmarking, even though you can also see the average reported value in the charts. Latencies are converted to "scores" because the Ranker always ranks values from high to low and latency is the inverse (lower is better). To convert from score to latency use latency = 1/(score/1000).

Both the Atlas Max and Orbi 6 have latencies in the low 20 ms range, with the Linksys at 22.6 ms and the NETGEAR at 23.7; a negligible difference.

Routing latency score - 90th percentile

Routing latency score - 90th percentile

Wi-Fi Throughput

Although the Charts include average and maximum throughput in the ranking algorithm, along with range, all are pulled from the throughput vs. attenuation (aka RvR) benchmarks. So that's our focus for comparing the basic performance of the Atlas Max' radios. Keep in mind that all the Atlas Max' radios are four-stream while the NETGEAR's are only two-stream. Keep in mind channel bandwidth used for the following benchmarks are 20 MHz @ 2.4 GHz , 80 MHz @ 5 GHz and 160 MHz @ 6 GHz.

2.4 GHz downlink shows both products tracking pretty closely, albeit with the Linksys having a slight advantage in the low attenuations (higher signal). But near the end of the run with signals getting pretty low, the NETGEAR pulls ahead, still producing 15 Mbps of usable throughput at the maximum attenuation value tested.

2.4 GHz throughput vs. attenuation - downlink

2.4 GHz throughput vs. attenuation - downlink

2.4 GHz uplink shows the Linksys with a slight advantage in low attenuations, but falling behind as attenuation increases (signal level drops).

2.4 GHz throughput vs. attenuation - uplink

2.4 GHz throughput vs. attenuation - uplink

5 GHz downlink again shows the Linksys with a throughput advantage over the NETGEAR. But this time it maintains the advantage throughout the test run. The additional link gain provided by the Linksys' extra two streams finally provides an advantage.

5 GHz throughput vs. attenuation - downlink

5 GHz throughput vs. attenuation - downlink

5 GHz uplink shows the four-stream Linksys again besting the two-stream NETGEAR for the entire test run.

5 GHz throughput vs. attenuation - uplink

5 GHz throughput vs. attenuation - uplink

Since routers and mesh systems are tracked in different charts, I had to manually pull 6 GHz comparison data together for plotting. 6 GHz downlink shows all four routers pretty evenly matched. Once again, however, the Atlas Max has the advantage with stronger signals, then falling off more rapidly as attenuation increases. The Hydra Pro 6E's (MR7500) throughput actually holds up a bit better than the Atlas Max

5 GHz throughput vs. attenuation - downlink

6 GHz throughput vs. attenuation - downlink

6 GHz uplink clearly shows both Qualcomm-based Linksys routers with significantly higher (~ 400 Mbps) throughput for the first third of the test run. The Hydra Pro 6E once again maintains higher throughput longer than the Atlas Max 6E.

6 GHz throughput vs. attenuation - uplink

6 GHz throughput vs. attenuation - uplink

Support Us!

If you like what we do and want to thank us, just buy something on Amazon. We'll get a small commission on anything you buy. Thanks!

Don't Miss These

  • 1
  • 2