Like every other website on the planet, SmallNetBuilder uses cookies. Our cookies track login status, but we only allow admins to log in anyway, so those don't apply to you. Any other cookies you pick up during your visit come from advertisers, which we don't control.
If you continue to use the site, you agree to tolerate our use of cookies. Thank you!

Wi-Fi Router Charts

Click for Wi-Fi Router Charts

Mesh System Charts

Click for Wi-Fi Mesh System Charts

Multiband Throughput

The new Multiband benchmark is the first SNB benchmark that simultaneously loads all radios in a router/AP/mesh node and that also measures latency under load. It's a good way to see whether (or how much) Ethernet port speed limits what you can get out of an AP. And since it's run on each node in a mesh system, it's also a good way to gauge backhaul bandwidth. Keep in mind, however, that you'd be hard-pressed to push an AP to the limits tested by this benchmark.

The test is run on each mesh node, with the mesh in multi-hop configuration, also known as daisy-chain. "Hop 1" connects back to the Root node, while "Hop 2" should connect only to "Hop 1" and then back to Root. It's possible that the "Hop 2" node could also have a direct connection back to the Root node. But since the path loss (signal attenuation) from Hop 2 to Root would be about 2X the loss from Hop 2 to Hop 1, that would not be a good choice for routing the packet.

The first plot shows throughput for the 2.4 and 5 GHz radios at the root mesh node for the Linksys and NETGEAR systems. It's clear that the Atlas Max has the advantage on both bands.

Multiband Throughput per radio - Root node

Multiband Throughput per radio - Root node

Moving to the Hop1 node brings backhaul performance into play. The Linksys still beats the NETGEAR on 2.4 GHz, but its throughput craters on the 5 GHz radio.When looking at these results, keep in mind that since both mesh node radios are simultaneously running traffic, the total of both bands' throughput is being run through the backhaul. So while the NETGEAR Hop 1 node is providing 491 Mbps total throughput to its two associated STAs, while the Linksys is passing along only 331 Mbps.

Multiband Throughput per radio - Hop 1 nod

Multiband Throughput per radio - Hop 1 node

Tables 2 and 3 show the throughput change for each band, referenced to Root throughput, for 2.4 and 5 GHz, respectively. I also included the Linksys' Hop 2 data even though the NETGEAR system has only one hop. Even though the Linksys' Hop 1 throughput is higher than the NETGEAR, the percentage throughput loss is almost 5X.

  Linksys Atlas Max 6E NETGEAR Orbi 6
  Throughput % change from Root Throughput % change from Root
Root 376 - 200 -
Hop 1 232 -38 185 -8
Hop 2 21 -94 N/A N/A
Table 2: Multiband throughput change, Root to Hop 1 node - 2.4 GHz

For 5 GHz, the Linksys' throughput is around 3X lower than the NETGEAR's and its Hop 1 loss is 30% higher. Although the Linksys' Hop 1 to 2 loss is only (!) 78%, the Root to Hop 2 loss is just shy of 100%, reducing the almost gigabit bandwidth of the Root node into low double digits.

  Linksys Atlas Max 6E NETGEAR Orbi 6
  Throughput % change from Root Throughput % change from Root
Root 933 - 742 -
Hop 1 99 -89 306 -59
Hop 2 22 -98 N/A N/A
Table 3: Multiband throughput change, Root to Hop 1 node - 5 GHz

In all, these results tell me something is seriously wrong in the Atlas Max's backhaul management.

Multiband Latency

For latency, CDF plots tell the story better than bar plots because they show latency and latency spread (jitter). Unfortunately, the SNB Chart system can't produce them; I generated these using octoScope's Expert Analysis tool.

The Root node 2.4 GHz latency CDF plot below shows the NETGEAR's 90th percentile latency is about half the Linksys' (107 ms vs. 229 ms). The Linksys' long tail of low latencies, however, says its latency variation, i.e. jitter, is greater.

Multiband Latency CDF plot - 2.4 GHz comparison - root

Multiband Latency CDF plot - 2.4 GHz comparison - root

The Root 5 GHz Latency CDF shows the NETGEAR again easily besting the Linksys for both latency (19 vs. 83 ms) and jitter.

Multiband Latency CDF plot - 5 GHz comparison - root

Multiband Latency CDF plot - 5 GHz comparison - root

Moving along to the Hop 1 node shows latency predictably degrading since backhaul latency is now also in play. Note the scale has doubled. If I had expanded it to show the Atlas Max 6E's entire range of values, it would have extended to 1700 ms. While both latencies have increased, the gap between the 2.4 GHz latencies has closed, with the NETGEAR 90th percentile value of 228 ms and the Linksys with 288 ms.

Multiband Latency CDF plot - 2.4 GHz comparison - Hop 1

Multiband Latency CDF plot - 2.4 GHz comparison - Hop 1

Hop 1 5 GHz latency for the Orbi also increases at 151 ms vs. 19 ms for root. But the Linksys' gets much worse 308 ms vs. 83 ms for root.

Multiband Latency CDF plot - 5 GHz comparison - Hop 1

Multiband Latency CDF plot - 5 GHz comparison - Hop 1

Since the NETGEAR has no Hop 2, I'll just show both its 2.4 and 5 GHz latency on one plot. Clearly, things are not good in latency-land by the time packets have gone through two hops.

Multiband Latency CDF plot - 5 GHz comparison - Hop 1

Multiband Latency CDF plot - 5 GHz comparison - Hop 1

Multiband time plots of throughput, latency and loss tell the story very succintly. The composite plot below shows Root, Hop 1 and Hop 2 left to right. Note that the Hop 1 ping plots for both bands are essentially the same, that tells me that backhaul latency is dominant. It's clear that things are not good in either throughput or latency-ville in Hop 2.

Multiband throughput, latency, loss vs. time, root, Hop 1, Hop2 - Linksys Atlas Max 6E

Multiband throughput, latency, loss vs. time, root, Hop 1, Hop2 - Linksys Atlas Max 6E

While I can show only Root and Hop 1 for the Orbi 6, the difference is striking. I apologize for the scale differences, but the Orbi's latencies look significantly better than the Atlas Max', even though both are showing low levels of ping loss. Hop 1 throughput is both higher and more stable, too.

Multiband throughput, latency, loss vs. time, root, Hop 1, Hop2 - NETGEAR Orbi 6

Multiband throughput, latency, loss vs. time, root, Hop 1, Hop2 - NETGEAR Orbi 6

Mesh Capacity

The last benchmark associates one STA per mesh node, runs TCP/IP traffic to all STAs simultaneously and looks at total throughput and latency per node. The previous version of this test used unlimited bandwidth TCP/IP traffic on all STAs, but associated a 2.4 GHz STA to the root node and 5 GHz STAs to other nodes. This was an attempt to not totally kill the backhaul on systems with no dedicated backhaul radio.

This time, the test uses all 5 GHz STAs, but limits each STA's throughput to 250 Mbps. Since a two-stream AX STA can produce around 900 Mbps of throughput with a strong signal, this test should not fully load a 5 GHz channel. The ideal throughput result for this test should be 500 Mbps for two nodes nad 750 Mbps for three nodes.

The Atlas Max was such a hot mess in this test that it's better to start with the time plot. It's clear that the Linksys didn't achieve the 750 Mbps it should have; this was actually one of the better results. The throughput jump around 60 seconds in is due to both Hop1 and Hop 2 node STAs disassociating. Hop 1 comes back a short time later to share the channel; Hop 2 never recovers. I saw this behavior in run after run. Don't even try to make sense of the Data Rate and MCS plots. But you can see the # of streams the STAs are using flap between 1 and 2 throughout the test run.

90th percentile latencies are not great for either root (320 ms) or the Hop 1 (768 ms) nodes. Best case both nodes' latencies tend to run in the mid 100's.

Mesh capacity time plots - Atlas Max 6E

Mesh capacity time plots - Atlas Max 6E

Now check out the same plot for Orbi 6. Not much to say except this is how a two node mesh should perform on this test. Note the latency for both STAs mostly between 10 and 20 ms. Remember, the Hop 1 latency includes latency in the backhaul.

Mesh capacity time plots - NETGEAR Orbi 6

Mesh capacity time plots - NETGEAR Orbi 6

These pictures tell the story better than anything else I can write. So I'll stop here.

Closing Thoughts

At $1200, the Linksys Atlas Max 6E is the most expensive mesh Wi-Fi system you can buy, but I wouldn't if I were you. Given the potential 4804 Mbps of bandwidth when the four-stream 6 GHz radio is used for backhaul and half that when 5 GHz is used, I'd expect client bandwidth to spare (multiple hundreds of Mbps) on even the second mesh hop. The system delivers nowhere near that. And don't even get me started on latency.

It's too bad, because a single node is actually a decent Wi-Fi 6E router, and there aren't many of those available. And for the same $500, the MX8501 SKU is a much better deal than the Hydra Pro 6E, since the Atlas Max 6E is a fully four-stream design. If you're considering a Linksys 6E router, the Atlas Max 6E "1 pack" is the one to get.

Support Us!

If you like what we do and want to thank us, just buy something on Amazon. We'll get a small commission on anything you buy. Thanks!

Don't Miss These

  • 1
  • 2