Wireless Performance - more
Moving on, although I knew what I would find, I ran a wireless security mode throughput check anyway. Figure 10 shows that average throughput gets a 33 to 45% hit when using either WEP or WPA/TKIP, but is essentially unchanged for WPA2/AES.
Figure 10: Wireless security throughput comparison - 5 GHz, 40 MHz mode, downlink
By contrast, throughput doesn't measurably change in any of the wireless security modes when you're using the 11b/g radio. You can see that plot here.
Since the 3300 uses an 11b/g radio by default in the 2.4 GHz band, it won't interfere with neighboring wireless LANs any more than a normal 11b/g router. But if you choose to use the 3300 in the 2.4 GHz band and in the "Up to 270 Mbps" channel-bonded mode—and I don't know why you would, given the flaky performance in that mode—then it will tromp on neighboring WLANs like other draft 11n routers.
If you are going to run a mixed WLAN, with legacy 11 b/g and 2.4 GHz draft 11n clients, be warned that the draft 11n clients should act just like 11 b/g clients since that's the radio that they will be operating on.
Check out the slideshow for more wireless test details
Closing Thoughts
I have to give Netgear credit for its unique approach to driving down the cost of dual-band draft 11n routers. It seemed like they were really at the head of the low-cost dual-band pack when the 3300 was announced at CES in January. But here we are in July and more dual-band competition has appeared, including multiple options below $100, although with single, not dual, radios.
In the end, what Netgear has produced is technically not a dual-band, dual-radio draft 11n router. Instead, it's a two radio 11 b/g, draft 11n hybrid that ends up doing a poor job on the draft 11n side in both 2.4 and 5 GHz bands and a good job only as an 802.11b/g router. I think Netgear should chalk this one up as a "learning experience" and get busy on a real dual-band router, or two... and soon!