Distributed Wireless Performance
The second part of wireless testing used the open air test process I've been using with all DWS products. I've done away with the set of tests with the middle node in the "Hallway" location, placing the middle or second test node only in the Living Room location for better connection to the root node.
The downlink bar chart shows results for most DWS products tested to date. I've removed the entry level Amplifi because Ubiquiti seems to be focused on selling only the HD model. I've also removed the Edimax RE11 because it's not a full DWS.
DWS throughput summary - downlink
Portal did pretty well in this test, if you discount the Living Room and Kitchen tests and focus on the Office and Kitchen Reconnect. The test client connected on 5 GHz in the Office location, then switched to 2.4 GHz when it roamed to the Living Room, as it often has with other products. Given the Portal's rather weak 2.4 GHz performance, throughput was pretty low, although not as low as Velop's. The test client stayed put on 2.4 GHz for the Kitchen test, with throughput dropping as you'd expect at longer distance. But when a reconnect was forced for the Kitchen - Reconnect test, the client moved to 5 GHz and throughput jumped up.
The same pattern can be seen in the Uplink test, although Portal's throughput was better, as you'd expect from the throughput vs. attenuation plot.
DWS throughput summary - uplink
The reason for Portal's superior "mesh" performance, which is second only to NETGEAR's Orbi, is, of course, its 4x4 5 GHz backhaul. The plot below shows throughput measured via Ethernet connection to the living room node of each product. This shows the throughput available to be passed on to clients and / or backhaul to other nodes and it's obvious more streams means higher throughput.
Backhaul throughput
Orbi still maintains an edge over Portal with its dedicated 4x4 5 GHz backhaul radio, however, because Portal must share its 5 GHz radio between client connect and backhaul. No matter how much algorithmic magic Portal tries to apply to balancing backhaul and fronthaul, an additional radio always wins.
Closing Thoughts
IDL didn't set out to design a DWS when it created Portal. After all, the company's main focus is its "zero wait" DFS technology that it's trying (with some success) to get designed into service provider gateways and set top boxes. But with the "mesh" wave overtaking the consumer router business in the past year, the company was smart to pivot and make sure buyers considering a Portal buy could tick the "mesh" box on their shopping checklist.
But it turns out Portal's AC2350 class design (3x3 N + 4x4 AC) is a good thing to have in a mesh node, since backhaul performance is key to overall system performance and you want to bring as many streams to bear as you can for high throughput. Portal is the only DWS in addition to NETGEAR's Orbi to have 4x4 5 GHz backhaul. And even though it's not dedicated and doesn't quite equal Orbi's in performance, Portal's backhaul gave it a significant edge over the field of 2x2 DWS, including eero, Luma and Google WiFi, in our testing.
NETGEAR's Orbi showed the value of high bandwidth backhaul to overall DWS performance and what a well designed two node (router + satellite) system can do vs. the three-pack designs that dominated the "mesh" Wi-Fi scene until Orbi appeared.
IDL needs to finish building out Portal's feature set, support wired backhaul and allow at least one additional node to be added. Once that is done, Portal has the potential to be a lower-cost alternative to Orbi, with the key advantage of providing more 5 GHz channels for both client connection and interference-free backhaul.